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Abstract

It is shown how to compute the detection probal:ility of certain signals
by numerical integration of the Laplace inversion integral involviag the
characteristic function or the moment-generating function of the detection
statistic. The contour of integration is taken as the path of steepest descent
of the integrand and is détermined numerically as the integration proceeds.
The method is applied to calculatingbthe performance of the'optimum detoctor
of a Gaussian stochastic signal in white noice when the signals actually pre-
sent have a different average s.n.r. from that assumed in the design. Results
are presented for narrowband signals with Loreﬂtz and rectangular spectral don-

.

sities. The detectability of the former is shown to be more sensitive than

... " that of the latter to the value of the design s.n.r. The relative disadvantage

of the threshold detector, also assessed by this method, is smaller for signals

’

with a rectangular than for those with a Lorentz spectral demnsity.
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I. Introduction

In calculating the probability of detecting a certain kind of signal by
means of a certain recciver, it sometimes happens that although the character-
istic function of the detection statistic is known in rather simple form, in-
verting it to determine the probability density function of the statistic and
integrating that to find the detection probability may be quite difficult.

One example is the detection of a fading radar signal by a recciver that suas,
or "integrates'", the quadratically rectified outputs of a matched filter follow-
ing transmission of a number of radar pulses. When the fading is described as
in Swerling's Cases II1 and IV, for instance, the average detection probahility
can be written down in closed form, but it is very complicated, although the
characteristic function from which it is derived is relatively sinple [1].
Straightf{orward computation with that closed form is a lengthy process when the
number of pulses integrated is large, and it may reqpire double prccision in
order to avoid Svezf]ow or underflow of the numbers involved.

Another example is the detection of a narrowband stochastic.signal, as
in radar astronomy and scatter-multipath communications [2]. When the sigual
can be modeled as ; segm?nt of a Gaussian stochastic proc;ss and is received in
white noise, the characteristic function of the optimum detection statistic can
be expressed as an infinite product inleving the eigenvalues of the autoco-
variance function of the signal process, and the probability of detection comes
out as an infinite series when this characteristic function is inverted by means
of the residue theorem [3,4,5]. Computations with this series are feasible only
when the number »f significant cigenvaiues is small, unless both the eigenvalucs
and the terms of the series are carried to double precision.

Problems such as these generally involve a detection s}aListic that can

at least roughly be represented as the sum of a certa
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random variables; this number can be termed the number of "degrees of freedom" )
in the statistic. In radar detection it is the number of pulses integroted;

in detecting a stochastic signal it is the product of the baundwidth of the sig-

nal and the observation time. The inversion of the characteristic function by

the residue thcorem in order to determine the probability density function of

the statistic, and its integration tec obtain the probability of detection, be-

come computationally the more difficult, the larger the number of degrees of

freedom in the detection statistic.

The probability of detection can also be expressed as a contour intcgral
involving the characteristic function or the moment-generaring function (m.g.f.)
of the detection statistic. Here we shall describe how the detcection prebabil-
ity can be conveniently calculated by numeriéal evaluation of this intenral
along an appropriate path. The path goes through the same saddlepoint of the
integrand that was featured in an approximate method for evaiuating such inte-
grals, described in [6]. By choosing the contour of integration as that along
which the integrand decfeases to zero most rapidly on each side of the saddle-

point, the integral can be expeditiously and accurately evaluated by applying

the trapezoidal rule [7]. This contour of integration is known as the patb of

E: steepest descent.

E€' An advantage of thé method is that it can be épplied when the number of
Ei degrees of freedom is arbitrarily large. The prinpiples underlying it are lu-
E; cidly explained in the book by Carrier et al. [8]. It was used in a fluid-

Ei mechanical problem by Esch [9], and a particular method for locating the path
h' of steepest descent and numerically integrating.a]ong it was described by Rice
?f. [7]. A somewhat different method for determining the path will be presented in
b" Section III. Because the use of steepest-descent integration to calculate de-
ii tection probabilitics seems not to be widely krown among radar cngincers and
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system analysts, it will be reviewed here in terws of a particular example,
that of calculating the detectability of Gaussian stochastic signals in white
noise.

The optimum detector of Gaussian stochastic signals requires for its de-
sign either knowledge of or an assumption about the average signal-to-noise
ratio of the signals to be detected. The performance of this optimum detector
was extensively analyzed by Van Trees [5] by means of an approxiwation to the
error probability akin to the Chernoff bound, buﬁ he assumed that the average
s.n.r. of the signals actuslly arriving was cequal to that for w%ich the detec-
tor was designed. The performance of this dectector when the avevage input
s.n.r. differs from that assumed in the design seems not to have been studied.
Here we shall show how that can be done by utilizing a new factorization of
the m.g.f., which is presented in Section Il, and which pernits efficient cnl-
culation of the detection probability by the re;idue series for low values of
the time-bandwidth product. Section III shows how to calculatec the detection
brobability for arbitrarily large values of that product by steeﬁest—descent
integration. Section IV describeé how to calculate the decision level recquired
for attaining a pre-assigned false-alarm probability. The results are presented
in Section V as graphs o% the average input s.n.r. needed in order to attain a
given pair of false-alarm and detection probabilities, as a function of the
average s.n.r. for which the detector has been designed to be optimum. The re-
sults enable us in particular to assess the loss in signal detectability entail-

ed by adopting the threshold detector, which is optimum in the limit of vanish-

ing input s.n.r. and is simpler to construct than the detector that is optiwum

for finite input s.n.r. The calculations were carried out for signals with two

-2
types of spectral density, the Lorentz, which decreases to zero like lml at

J-‘.'.‘.". Ve
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- larze frequency deviation Iw[ from the carrier frequency, and thc rectangular,




| e e e e g e e e o S AR S I Y SR M

K -

AR which is confincd to a finite spectral band, within which it is uaniform. These
] ~

two types of spectral density represcnt copposite cxtremes, bracketing spectral

X

densities with a variety of asymptotic dependence on lwl It is found that thc

o detectability of sigunals with the Lorentz spectral density is much more scnsi-
[ S

i‘,'.

b tive to the choice of the design s.n.r. than is the detectability of signals

»

P with a rectangular spectral density.
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II. The Detectability of Gaussian Stochastic Signals.

(a) The Uptimum Detector
A narrowband Gaussian stochastic sigual
if2
s(t) = Re [S(t)e™F)

of carrier frequency § is to be detected in the presence of white Gaussian noise

of unilateral spectral density N by observation of the input

-

v(t) = Re [V(t)el?t)
to a receiver during an interval (0,T). The complex autocovariance function
of the siguul is
= :1_ s y *
¢(t;.ty) = LE[s(e))s* (e, &)

E standing for expected value, and

E[S(tl)S(tz)] = 0.

The derivation of the optimum and threshold detectors is well enough known that
a summary to establish notation will suffice [3,4,5].
Define hypothesis HY as the proposition that the complex envciope of the

input v(t) to the receiver is

V(t) = yPs(e) +N(¢), )

where N(t) is the complex envelope of the white noise, with

3EINCE N (£))] = N6(t ~t,),

E[N(tl)N(tz)] 0. : (3)

The parameter Y measures the strength of the incoming signals relative to that
of the signals for which the receiver is designed to be optimum.
The complex envelope V(t) of the input is sampled by means of a set of

functions fk(t) orthonormal over the cobservation interval (€,T),
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V(t) =Z zkfl_(t'), z, =/ fk‘k(t)\’((‘)dt. (45

k=1 N o
By taking the fk(t) as the eigenfunctions of the kernel N_]cb(tl,tz),
T
A S (6) = N”lf ¢(t,8)f, (s)ds, ¥k, (5)

0

the complex samples 2, = Xk+ 1'yk are statistically independent, circular-complex

Gaussian random variables whose real and iwmaginary parts have variances

%E(zkzk"-‘IHY) = N(1+7YA) (6)

under Lypothesis HY; the joint p.d.f. of a [initec number n of thew can be

ﬁ written

pY(xl, cees X5 Yia e, yn) = pY(zl, ceey zn)
I | Pk
= [27N(1 -+ YA )]-1 exp |- ——L— (7N
) k 2N (1 +'y>\k)
k=1
b -
b The optimum detection statistic U is proportional to the logarithm of the
2
- _ ~ e
.—“ likelihood ratio pl/p0 in the limit n - o,
| N N e
z z
' u=3 : "N(ltx)
o k=1 k
e = Ay l7 )
- 1 k' 'k
P P (8)
: k=1 k

This statistic is compared with a decision level UO; when U > UO’ the receiver

?‘ decides that a signal is piesent. The value of UO is set so that the false-
-~

2 alarm probability Pr (U > Uolllo) takes on a pre-assigned value QO'

A -

. We shall calculate the probability

=

.

(@ Q,(y) = Pr (U>u,|u) (9)
p— d o'y
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that the receiver decides a signal present whean the one actually on hand is a
rezlization of a narrowband Gaussian stochastic process with complex autccovar-
iance Y¢(tl,t2). The moment-gencrating function (mn.g.f.) of the statistic U

under hypothesis HY is

hy(s) = E(e_SUlHY)

© o o 2 2
= I l (2iN(1+vA )] eXP | = NG FyL) ~ 28 F ) | Tk Pk
k—_-]_ ’ -0 00 -k k

Il asnma™ (10)
k=1
whare .
A (L+v2)
_ kT k7 .

Then the detection probability is

ctice
- - -1 . « .
Qd(Y) = / s hY(.s) exp (Uos)d.,/ZTTJ .
: c—i» .

g ' -w < e <o, (12)

e, e

@

by the inversion theorem for Laplace transforms; the contour of integration

runs parallel to and to the left of the imaginary axis in the complex s-plane,

L 4
[SY

but to the right of the singularities of the m.g.f. hY(S)' By evaluating the

LA
‘

> W? ot ”
- q ettt
b R I

contour integral by the residue theorem, wc find

Qd(y) = k§=31 pk exp [—UO/Uk(Y) ] ’

(13)
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A form often more convenient for computation arises by factoring the terme

of hy(s) as

. 2
l+~(14—s)lk4~yskk ) (14~aslk)(l+-ﬁskk)

l+y s = o3 (14)
k 1+Ak 1+)\k
where
2 2
a, = als;y) = ${1+s+ [(1+5)7 - 4ys]®},
2 1
B, = B(s;v) = 2{1+s- [(L+8)" 7 4ys]7); ' (15)
and the m.g.f. is
D(1)
N . N 16
) = S ynE) (63
in terwms of the Fredholm determinant ’
D(s) = E (14—Aks) (17)
k=1
associated with the integral equation (5).
_ -1
At the pole s, = -[W (V)] " of hY(S)’
YA +A)
OLS = (X(Sng) = (lk = ‘ml‘(‘—) N . (18)
BS = B(Sk,Y) = - 1/)‘k‘ aa9)

Thus the poles of hY(S) reside in the factor [D(Bs)]—l of (16), and the residuc

at s = equals

S
k 2
b1 (1+2y2 +v), ID(1)
' -1
D(c, ) D' (-A )(dBS/dS)S=Sk

@ +vA) e )0 (-2, H’

the prime indicating the derivative dD(s)/ds. Again cvaluating (12) by the

residue theorem, we find for the detection probability .
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z“’: ol,(l) (1+2y2, +Ylk2) Ug
Q (v) = p(1) ‘“;“~7“*Tf“jf§-“ﬁm—— exp [ P (20)
d =1 (]nk\lk,(ll nk)b(;k)

where the coefficients

-1
A
(1) _ ' -1 - _Q'. s
Py = Ak/D (—Ak ) = I ! (1 ) ) (21)

24k
independent of Y, can be computed once for all values of the design s.n.r.
(b) The Thresheld Detector

The thresiiold detection statistic UO is obtained by negleccting Ak in the

denominator of each term in (8), as though the signal for which the detector

is designed to be optimum were much weaker than the noise,

Uy = (7t E;l Xklzklz. (22)

. . . . . 6 < . .
It is compared with a decision level UO » and a signal is declared present when

Ue > er. The m.g.f. of the threshold statistic is

hYe(s) - E[exp(—sUG)IHY]
=IWI SRR
‘ k=1
= [p())pB)1 ™, | (23)
6

W () = A A+YA), (24)

' By ' i
of = Ls + (P aye)®, Bl = 2is (- 4y0)F, (25)

A similar analysis shows that the detection probability attained by the

threshold detector,
6 0
Qg (¥) = Pr (Ug > U, "B, (26)

is given by the residuc scries (13) with Uk replaced by uke, or by




-

"
<
»

..q...,
" Sttt
‘&

v T v T 7

o o (1) . '
U S SR S B T
d &= GHvdne)) uko(‘-r)J
ap = Y/(4yA). (275

Here the parameter Y measures the signal strength relative to that of the sig-
nal S(t) involved in (1), although this is no longer that for which the detector
is optimun.
(¢) The Fredholm Determinant

The series in (20) and (27) are most convenicnt when the Fredholm determi-
nant D(s) is known in closed form. As shown by Sicgert {101, it can be calcu-

lated from the soluticn h(t,s;u;jT) of the iuntegral cguation

T
h(t,s;u;l)%—uN_l ¢(t, ) (r,s;u3T)dr = uN_1¢(t,s),
0
0 < (r,s) < T, c<tT<T, (28)
whereupon
T
D(s) = exp h(t,t;s;t)dt|. (2%)

0 .

When the real and imaginary parts of the complex envelopz S(t) of the
signal can be modeled as the outputs of identical lincar systems driven by in-
dependent white~noise generators of equal strength, the signal will be said to
be leucogenic. The Fredholm determinant D(s) can ihen be calculated by a method
given by Baggeroer [11]. This is the case, in particular, whcﬁ the signal is a
segment of a stationary random process with a narrvowband spectral density ¢(w)

- 2 . .
that is a rational function of W ; the complex autocovariance function of the

signal is

]

¢(t,s) = @(w)ojm(tns)dw/ZH.

-C0

10
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(The origin of the w-scale is the carrier frequency £.)  The Jincar systems,
described by state vectors of finite dimension, are then statiouary, as are
the whitce-noise generators. By utilizing a linear system with complex state
variables, as shown by Van Trees [5, Appendix, pp. 565-598), a broader class
of complex signal envelopes S(t) could be handled, but this has not becn neces-—

sary in the work reported here. Oace one has the T'redhiolm determinant, the

B eigenvalues )‘k can be calculated by finding its zeros )

p

) D(Sk) = 0, )\k = —l/sk, k=1, 2, ...

[‘ When the real and imeginary parts of the signal envelope S(t) are inde-
.

o pendent Gauss-Markov processes, the complex autocovarisnce function is

P:

- —ul t-s |

o(t,s) = ¢ e : (30)

the signal has a Lovenitz spectral density
2u¢,
() = —5—75 (31)

wz + 112

and as shown by Siegert [10] the Fredholm determinant is

2 mg 2 -mg
D(s) = (1+¢g)7e (ml g) e ,
b4ge
= - 3 _ T
t g = (1+ks)®, m= T, Kk = ol (32)
:ti'-'. where E = ¢0T ie the average encrgy, of the signals s(t). The eigenvalues )‘k
E". are given by
. L
)\k = K sin Gk , (33)

where Ok is a root of the transcendental equation

0 IR Sald At ik i bt
A‘ ST,

m cot Bk = 20k+ (k=1)m,
i k=1, 2, ..., 0<8 <r1/2, (34)
r. which can quickly be solved by Newton's method. The associated value of g in
.
i
s 11
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(32) is
B <] cot Gk.

For k >> 1 the eigenvalues are approximately

2

) - fl ~ i

Ak 2 = 2.2 = N ' ¢ ('J““ L)T;) 2%
m”+ (k-1)"w

(1)

In terms of Ok the constants Py defined by (21) are

1L e gin? 20,

m+ 2 sin Ok

For a stationary lcucogenic signal whese narrowvband spectral density 2(w)
has the form of that for the noise in an RLC circuit in thermal cquilibrium,
the Fredholm determinant has been calculafed by Slepian [12].

(d) Computation with the Residue Series

When the cigenvalues Xk drop of{ rapidly to zero with increasing index k,
it is unneccssary to have the Fredholm determinant D(s) in closed form in order
accurately to evaluate the residue series (13), (20), and (27), provided one
has computed a sufficient number of those eigenvalues. The behavior of the

.

eigenvalues illustrated by (35),
-1
stz N “¢(kn/T), - k >> 1,

is at least approximately manifested for arbitrary smooth spectral densities
d(w), and the more rapidly the spectral density decrecases to zero with increas-
ing angular frequency w, the more expeditious computation with the residue
series becomes.

When the narrowband spectral density ¢(w) is a rational function of wz,
the eipgenvalues Ak can be calculated by methods given by Youla [13], the writer

[14}, Slepian and Kadota [15], and Baggeroer [11]. The method of [11] applies

12
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also to noastationary leucogenic signals.
In the extreme case of bandlimited signals with a rectangular spectral

density

d(w) = E/W, -TW < w < 1W,

0, lw] > mw, (37)

of bandwidth W, the eigenfunctions fk(t) are the prolate spheroidal wavefunc-

tions [16], and the cigenvalues have been tabulated by Slepian and Sonmenblick

[17]. Their eigenvalues, which we denote by ana are related to those as de-

fined here by

E S

A T WT n-1? (38)
and their parameter ¢ is ,
c = TWT/2. (39)

]

Reference [17] tabulates Ans for 0 = n=x 20 and n 25, 30, 35, 40, and for

integral values of ¢ up to 20, as well as for ¢ = 25, 30, 35, 40. TFor c >> 1

there are approximately WT equal eigenvalues ngz E/(NWT), and the rest decrease

exponent:ially to zero with increasing index k.
For the sake of comparing spectral densities we adopt as our definition

of bandwidth W the expression

) 2 o
f@(w)dw/Zﬂ /f [d)(m)]zdw/Z'n, 40)

]

W

which accords with (37). For the Lorentz spectral density in (31), W = u,
The effective number
o 2 o0
-
M = <Z k)/z A (61)
k=1 k=1

of significant eigenvalues of (5) is

13
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lﬁ(t—-u)!zdtdu (42)

“&‘-\.

= [$(0)r] //

in terms of the complex autocovariance function E(T) = ¢(t,t+71) for a sta-

!‘D

tionary signal, and it is approximately equal to the tiwe-bandwidth product WT
when large.

When the time-bandwidth procduct is large, computation with the residue
series (13), (20), and (27) becomes infeasible. Its terms alternate in sign,
and as the terws of lowest order arce of the same order of magnitude, they nust
be evaluated with high precision if the scrvies is to be accurately summed. 7The
constants pk in (13) and pk(l) in (20) and (27) involéc differences of the eigen-
values, and becausc the eigenvalues of lowest order lie close together, thesc

must be known to many significant {figures in ordur to determine those coustants

accurately. The situation is lecast favoreble for the rectangular spectral den-

sity, for which the eigeuvalues are tabulated to only eight significant figuves,
and computing them to more significent figures would be laborious. Even for the
Lorentz spectral density, the residue series has been found to be inaccurate for
WT of the order of 10 or larger. Annther wmethod of evaluating the detection

.

probability Qd(Y) must be sought.

14
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111. Steepest Descent Integretion

When summing the residue scries is not feasible, we resort instecad to ceval-
uating the integral in (12) or its counterpart

ctior
1-Q4(y) =0 (V) = s"th(s) exp (Uos)ds/2nj, (43)

c—io
c >0,

numerically. We have a broad latitude in picking the location and the form of

the contour of intepration, and we try to choose them in the most advantagecus

manner. Viewed as a function of s for real valuss of s in —ul < Re s < o

the integrand

exp Y(s) = (is)-]hY(s) eXp (UOS) (44)

of (12) or (43) has two minima, one at a poiﬁf s = uo' in —ul—l < Re s < 0, the

‘other at a point s = uo" > 0. (For *: we use -s when the path of integration

1

0 and (12) is evaluated, and we usc +s when the path passes

passes through u
through uo" and (43) is evaluated.) As a function of complex values of g, the

integrand has saddlepeints at u,' and u,.'" [6]. If the path of jintegratioa passes

0 0

vertically through uO' or uo", the magnitude of the integrand, vhich is maximum
at the saddlepoint, decreases mosi rapidly as the point s = u+ jv moves up or

down the contour from uo' or uo".

These saddlepoints are the roots of the equation

d _
1 = e—— - =
¥y (uo) s [2n hY(S)] . + U0 u, 0,

0

u, =u.', u', (45)

primes on Y denoting differentiation, and this equation can be expeditiously

solved by Newton's method,

15
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dS u ..

0
It will be necessary to compute these derivatives numerically if the Fredholm
deterwinant D(s) involved in hY(s) is not known in closed form or is too com-
plicated. Alternatively on2 can use Newton's methed to solve the cquation

Im Y(u+jv) = 0 47)
for u, witl the imaginary part v taken infinitesinal, but positive, evaluating

the derivative of this function numerically. The values of u.' and UO' necd

0

not be known to high precision.

In [6] the integrals in (12) and (43) were evaluated approximately as

1
Qq(y) = [20¥"(uy"3] ® exp ¥ (u,") (48)
when U > E(U]HY), u(') < 0, and
-1
1= Q) = [208"(uy™ 1% exp ¥ (uy™, (49)

when UO < E(UIHY), uO" > 0. That paper [6] lists previous work on "saddlepoint
approximations”" of this kind. .

The path along which the integrand in (12) and (43) decrecases most rapidly
to zero is called the path of steepest descent [8]. Along the path of steepest
descent the integrand remaius real, or what is the same thing,

Os-arg(is) = 0, s = u+jv, (50)

Im ¥Y(s) = arg hY(s)4-U
vhere arg s is the principal value of Im (&n s). Because the integrand de-
creases most rapidly along this path, a numerical integration of (12) or (43)
along it, utilizing, let us say, the trapczoidal rule, requires fewest steps

in order to attain a prescribed accuracy. Solving (50) precisely at each point

along the path at which the integrand is evaluated, however, would much protract

16
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the computation. Instead we solve (50) only approximatcely and corrcet for the

discrepancy.

i
[

Equal steps Av are taken in the vertical direction, starting at v

il

For each value v = v mAv, m =1, 2, ..., the solution of (50) for u u(vm)
is undertaken by Newton's method. That is, with a convenicnt interval Su,

and starting with a trial value of u, we determine a new trial value by

R8s e ,
u < u flurow —1(0)° f(u) = Im Y(u+jv). (51)

In our computations thc number of iterations at each point was limited to five.
The initial trial value was taken as the linerr extrapolation of the two pre-
vious solutions,

u < 2u(vm_l)-u(vm_2).

(A quadratic extrapolation,

u <« BU(Vﬁ-l)

- 3u(vm_2)+-u(vmmj),
would start the iterations of Newton's method closer to the solution of (50)
and reduce the number of iterations required.)
The trapezoidal rule is used for reasons vxplained by Rice [7]). By virtuc
of the symuctry cf the intcgrand and the path of integration with respect to the

real axis, we approximate the integral by

- '
uo UO <u, Qd(Y) 1
=2 Re m§=0 E:m exp [Q'(sm)](Av—jAu) s

1}

" _
UO U-O > 0, 1 Qd(Y)

s = u(vm)-+Jvm, V.= mAv,
Au = u(vm)-u(vm_1), m>0
= 0, m= 0,
PR m=0
£ = . (52)
m 1, m>o0.
17
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As with the saddlepeint appreoxiwmation in (4€), (49), the integration starto
from uO' < 0 for U0 > E(UIH ) and from u," > 0 for U, < E(UIHW). When the de-
Y 0 0 ¥
cision level U0 is close to the mean E(U!H%), it dees not matter at vhich saddle-
point the integration begins. The summation is stepped when the magnitude
exp [P W(sm)] of the integrand falls below a gpecified fraction of the value
of the sum so far accumulated.

If (50) were solved exactly, the factor exp W(sm) in (52) would be rcal and
the term jAu in As = Av - jAu would not contribute, but since (50) is solvad only
approximately in order to save computer time, V(sm) has a small imaginary part,
which combined with jAu induces a small, but nccessary correction to the terns

of (52).

The initial step-size was taken as

_1
Ao = 29" |7E u =gt o ug, (53)

which is of the order of magnitude of the width of the integrand as a function
of v in the vertical direction. The second derivative w"(uo) arises in solviug
(45) to determine the saddlepoint and is thus known before integration begins.

Figures 1 and 2 show typical paths of steépest deascent for calculating the
probabilities Q0 = Qd(O) and Ql(l) = 1-Qd(l) for the optimum detectors of sto-
chastic signals having Lorentz and rectangular spectra, respectively. The neg-
ative numbers along the paths indicate 1og10 of the ratio of the value of the
integrand at each marked point to that at the saddlepoint. The rapid decrease
in the integrand is evident.

By cxpanding the exponent Y(s) of the integrand in (12) or (43) in a pover
series about the saddlepoint and keeping terms through (s-—uo)a, one finds for
the equation of the path of steepest descent in that region

" 2
) U(6‘PO"+ 3‘1’0"' U+ ‘}'0 vY)
Wd"+~Wd"\) i

(54)

U = U"'Uo,

18
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o the primes indicating derivatives of Y¥(s), which are evaluated at ug- Thus

.: : in the neighborhood of the saddlepoint the path is approximately a parabola [18],
’h . 2 (34} " :

C = -0V = - N, . 55

_{t u = ug-gov, o Yo / fy (55)

Having determined that the path of steepest descent is nearly parabolical,
one can shorten the computation time by integrating instead along the curve de-

fined by (55), replacing (52) by

LAY 4 v‘vi,' ST "1‘-“ T T
-

) o ,
ug =Yy < 0s Qy(v) ]
=g" > -
uO uo 0, 1 Qd(Y)
2 o m=0
v = mlv, s = u, -sov “4iv, e =
" S “ {1, m>o. (56)

It is unnccessary to know the curvature ¢ to high accuracy, and if it is incon-
venient to differentiate ¥(s) analytically at s = Uy, ome can determine O nu-
merically by cvaluating the exponent Y(s) at two points on each side of the

saddlerint:

U = Ylug+ké),  k=-2, -1, 1, 2,

whereupon fitting a third-degree polynomial to these points yields the approxi-

mation
-1 —
2(‘1)‘1 ]l)_l) lr)z + ]’!’_2

26(42+ ‘4')_2" U’l- '_1)

o= (57)

One can take the spacing § of the order of Av as given by (53).

Trials with both (52) and (56) with the same design s.n.r. SO = E/N for

values of the time-bandwidth product WI equal to &4, 8, 12, 20, and 35, with
=4

the decision level Uo selcected to yield a false-alarm probability of 10 ' and

with the spacing Av selected as in (53), yielded i1dentical results to eight

significant fipures. With the integration stopped when th magnitude exp{Re Y(s)]

-10 . .
fell to 10 1 times the value of the accumulated sum, eleven steps were required.

19
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Halving the step-size changed the result only in the eighth significant Tigovre,
and only once by more than owe digit in that placc; twventy or twenty-one steps
were required. The curvature 0 decrecased slightly as WV increased from 4 to 35.
Integration for Qd(O) and Qd(l) along the path in VFig. 2 for the rectangu-
lar spectral density and along the approximating parvabola (55) yielded vesults

stable to seven significant figures with eight steps.
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TV. Setting the Decision Level

The decision level ') is to be sot at such a value that a pre-assigned

0

false-alarm probability

Q, = Qd(O) =/ PO(U)dU (58)

Yo

is attained; pO(U) is the probability density function of the statistic U under

hypethesis H, that no signal is present. Starting from a trial value of UO, a

0

new trial value can be computed by Newton's method,

Q,(0) -0
d 0
U, < U, = o, (59)
0 po(bo)

and thce proceduvre repeated until the value of UO ceases changing significantly.

The residuve series for the terms in (55) is from (20)

P (1+)\k)U0
Q,(0) = D(1) 2 e exp | - ——r K0 (60)
d ko1 li-kk kk
and by differentiation
o (1)
p . (1+2)U
k k’"0
P, (U) = D(1) :E: ——— exp | ~ ———— (61)
00 1 Ak | Ak .

When the time-bandwidth product WT is so large that computation with the
residue series is infeasible, the probability Qd(O) can be calculated by inte-
grating (12) with vy = 0 along the path of steepest descent or along a parabola

as in (56). The density function (U0) is given by a similar contour jutegral
Py :

pO(U) =/ ho(s)eUSds/ZHj. | (62)
C

Although it is not the best contour for cvaluating (62), the steepest-descent

path used for evaluating (12), as explained in Scction I1I, or the parabola
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in (55), can e used to inteprate (62) numerically as vell; the corputor aceun:-
lates both sums sinultancously. The value of pO(UO) in (O7) is5 not needed to
greal accuracy in order for Newton's me(hoé to he applied.

Computer time can be siaved by deterwining tioe initial triel value of UO

by the more rapidly calculated saddlepoint approzimation in (48), whiclh for

this purposc takes the form

-3 D(1)
~ eyt 1t ' = N o !
QO o f21r‘10 (uy") | WO'_WUO'H) exp (Uyuy") (63)
with
. N V16 D N .
exp [Vo(s)] Sh(e 4 19 exp (Uos). (64)

Solved for UO’ (63) vields

- 1
Uy = uy' lln{!2ww0"(u0')!"luo‘ln(uo'-+])QO/D(1)}. (65)

One puts a crude trial value of the decision level U, into (45 determines thie
b ’

0
saddlepoint uo' < 0, calculates a new trial value of Uy from (65), and iterates

this procedure until it converges; it has been found to do so rapidly. The re-

sult is the ini+ial trial value of UO for (59).

PN P LI U, WL e DTy i oy - DN U P O 4 » - o




¢ it s el R A e b sl S SR e A L A A
x v - AN w LT . . - . ST T E - T

V. Perfoance of the Optimum and Threshold Detectors

Pr‘ Equipped now with accurate meons of calculating the detection probability
Qd(Y) for a range of vslues of the time-bandwidth product WT, we can compare
the perfe:nance of detecters designed to be optimum for various values of the
design s.n.x. SO = E/N, including the thresliold detector, for which that design

s.n.r. equals zero. We set the false-a2larm prebability QO = Qd(O) equal to 10—4

and determined the decisio. levels U, as described in Scetion 1V,  The input

0

s.n.r. S = YSO requirced to attain detcction prebubilities Qd(y) = Qd = 0.9,

0.99, 0.999, and 0.99%9 were then couputed by Newton's nsthod. That is, with

a suitable increment fy, a new trial valuc of the ratio v was deter..ined by

Q.(y)-Q
w' _ d d
. TEY TG ED Sa ) 8y

in which the valuces of Qd(Y) and Qd(y-kéY) vere deterrined by either the residuc

series, as in Scction 11, or the conteour integral, as in Section I1f, depending
on whether the time-bandwidth product WT was small or large.
The resulting input s.n.r. § = YSO are plotted in db. in Tigs. 3 - 7 versus

the s.n.r. SO for which the receiver is designced to be optimum. Figures 3 and

. 4 display thce results for signals with Lorentz and rectangular spectral densities,
.
E: respectively, and with the same time-bandwidth product WI = 8/nw = 2,5465. Fig-
A
E'. ures 5 and 6 do the same for WT = 14/% = 4.4563. (These values of WT correspond
E to values of Slepian's paramecter ¢ equal to 4 and 7, respectively.) Figure 7
E displays the input s.n.r. for signals with a Lorentz spectral demsity and WI = 35.
..
t'. Each of the curves in these figures exhibits a minimum at that value of the
fv design s.n.r. SO for which Qd(l) cquals the fixed detection probability 6& for

the curve. For larger design s.n.r. the curves rise extremely slowly; in this
- range the performance is quite insencitive to the s.n.r. for which the detector
o |
f is designed to be optinum. For smaller design s.n.r., on the other hand, the
s 23
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curves rise vapidly to their peak value ot S, = 0, which r1epresnts the threshold

0]
detector. The difference betweew that peak value and the minimum measures the
relative perforwance disadvantapge of the threshold detector.

This relative disadvantage is much smaller for signals with a rectauonlar
spectral density than for signals with a Lorentz apcetral density, for cqual

valucs of the time-bandwidth product WI. The reason is easily secen. lhccause

for the rectancular spectral dencity the iuntepral equation (5) has approximetely

WT equnl eigenvalues kk’ and the rest are nepligible, the optimna detector is
very like a detcctor that ecuwplcoys the decision statistic
{WT]
N N
2
'UI = }_a’ lzl’l
k=1 N

for all values cf the design s.on.r., where [WT] is the integral part of WY,
-That this is a good approximation is cvident from (Fj. The statistic U' has
approsimately @ scaled chi- squared distribution with 2{UT] degrees of frecdom.
The performance of the optimum detector for signals with a rectangular opectral
density, theiefore, does not vary much over the entire range of valw : i the
design s.n.r. For signals with a Lorentz spectrs] density, on the other hand,
the relative weiphting of the terms in () is far from unifer: and depoends

more strongly on the design s.n.r. As I'ig. 7 shows, cven at WT = 35 th~ dif-
ference between the threshold detector and the detector optimum at each of the

prescribed values Q

d of Qd(l) is of the order of 0.65 db. Tthough the tliores-

hold detector is close to the optimum when the s.n.r. per degree of freeden,
E/(N1), is small, the weak-signal approrximation by which it is derived becomes
valid for signalg with a sharply cut-off spceetral density at lower values of
the time-bandwidth product WT than for signals whose spectral density declines

only slowly to zero with increasiug frequency deviation le.

24
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It was the efficliency of numerically integrating the Laplace ioversion
integrals in (12) and (43) along the path of steecpest descent or its oscolatory
parabola that enabled computing in a reasonslle time the great nusber of values
of the detection probuability Qd(\') necded for mapping the performonce of those

detectors to the extoent described here. 7The method is worthy of trial whentver

cumulative probabilities are to be evaluated (v raudom variables whese moment-

generating or characteristic functions are known in analytic or coumputable form,
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Figurc Captions

Fig. 1. Paths of steepest descent in contour integration of (12) for Qd(O),

100, U, = 34.849121,

Qd(l): Lorents spectral density, WI'= 8, § 0

o~
Qg = 10

Fig. 2. Paths of steepest dencent in contour integration of (12) for Qd(O),

Qd(l): rectangular spectial density, WI = 14/1 = 4.4503, S0 = 100,
_ s o o 1o
UO = 18.195885, QO =10 .
-4
Fig. 3. Input s.n.r. to yicld detection probability Qd for QO = 10 *, versus

T SREa-taura e ua s TSI .
N e i o, st
Pl . et T

design s.n.vr. S Lorents spectral density, Wi = 8/1 = 2,.54065., Curves are

L
o

0:

Dty

indexed with the value of 6&.

1T,

— =4
Fig. 4. Input s.n.r. to yicld detection probability Qd for Q. = 10 ', versus

O ’
design s.n.r. SO: rectangular spectral dens=ity, WT = 8/1 = 2.5465. Curves
are indexed with the value of 6&.

= -4
Fig. 5. Input s.n.r. to yield detection probability Qd for QO = 10 °, versus

design s.n.r. SO: Lorentz spectral density, WT = 14/7 = 4.4563., Curves

arce indexed with the value of 6&.

Fig. 6. Input s.n.r. to yicld detection probability 65 for QO = 10~ , versus

design s.n.r. S3:  rectangular spectral density, Wi = Y/ = 4.4563, Curves

are indexed with the valuc of 6&.
Fig. 7. Input s.n.r. to yield detection precbability 6& for QO = 10-6, versus

design s.n.r. S Lorentz spectral deusity, WT = 35, Curves are indesxed

O:

YTy YT
i Rt FEC T T

¢
‘

with the value of 6&.
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